
u3a Research Database
Background

The u3a research database is now found at u3aresearch.uk. The database and web
interface resulted from a project begun in 2015 by members of Malling u3a in conjunction
with the national Research and Shared Learning Committee. A work-in-progress version of
the site, partially populated with data on known research and shared learning projects, was
presented to the Research and Shared Learning Committee in November 2015 and after
amendment and further population of data, presented to a meeting in London in March 2016.
It was then officially launched with the domain u3aresearch.org.uk and the database and
software for the interface moved to a server provided by u3a head office.

Projects featured

The categories of project (one of which must be selected when a new project is entered) are:

○ u3a-led research
○ u3a shared learning project
○ External research with u3a assistance
○ External research with u3a members or groups as research subjects
○ Research about u3a

Projects can also be “tagged” as relating to one or more of a longer list of topics to assist
searching and grouping. The list of topics can be expanded as necessary.

Addition and editing of project information

A user interface for logging in and editing has been a feature of the site from the beginning.
The intention was for adding and editing to be done by regional and local representatives
(u3a members) who would be in contact with projects in their area. This has happened to
some extent but the response has been patchy and in practice most projects have been
added by Jo Livingston, a member of the Research and Shared Learning Committee and a
small number of local representatives. Around 40 u3a members have been granted editing
credentials since 2016 but most of these are no longer active. The total number of projects
registered on the database is now (February 2024) 1084.

Technical background

The original version of the site was built with a single file sqlite database, the original batch
of data being imported via csv files from existing spreadsheets, with the code for the
interface, both public pages and the user authentication and editing, being written in PHP
using the PHP data object (PDO) for connection to the database and basic data
representation. The design was database led, the process being first to structure the
database to accommodate the information available and the anticipated uses (storage,
searching, browsing, adding and amending) and then to construct the interface from the
bottom up to enable public viewing, searching and browsing, and editing by authenticated
editors. Apart from the PDO itself, the code included a single PHP class templating an object
for each project; otherwise, the code was procedural rather than object-oriented.

The PDO was used for database connection and data representation as it offers greater

https://u3aresearch.uk
https://sqlite.org/
https://www.php.net/
https://www.php.net/manual/en/book.pdo.php


security than older methods and facilitated switching to a different database if desired with
minimal changes to the PHP code.

There was some discussion about which database to use, one member of the team
advocating use of a server-based rather than single-file database, but it was agreed to stick
with sqlite at least for the earlier phases of the project, retaining the option to move to a
server-base database at some stage in the future. This hasn’t yet happened. The main
limitation of sqlite would become apparent if the volume of use made it likely that concurrent
commitments (resulting from editing or adding, not just reading) conflict. At the current or any
likely foreseeable level of usage, this is highly improbable, and meanwhile the greater
flexibility and transferability of sqlite provide strong arguments for staying with it.

Use of javascript has been very limited, within the philosophy of progressive enhancement,
providing core functionality through server-side code and only, for example, highlighting of
results of searches through client-side javascript. This remains the case with version 2 of the
site, referred to below.

Developments since 2016

Since launch, the database has gradually been expanded by the addition of further projects.
The main change in the public facing pages of the website has been the adoption of a
responsive design enabling satisfactory viewing of the site on a much wider range of
devices, including mobile phones, without switching users to a separate version of the site.
This has been made necessary by the increasing use of mobile devices to view websites
and made possible by developments in CSS and the ability of modern browsers to interpret
html and css consistently.

The interface has worked successfully and proved resilient to achieve its modest initial
objectives. The main challenge with maintenance has been keeping access to the server
used by u3a HQ and needing to intervene when services or certificates have been allowed
to lapse. Keeping the database alive has not been a priority for the staff at HQ, who have
had much bigger challenges to their resources, especially during the last couple of years.
After the hosting changed and then lapsed for the database files in 2023, I set up the
alternative domain name u3aresearch.uk and used copies of the scripts that I had and a
recently backed up copy of the sqlite file to set up the site again on the server on which it
had been originally developed (the provider is alwaysdata, a company based in France that I
have used for a number of years).

Because I had not had access to the files on the HQ server for most of 2023, I had a backlog
of “backend” updates that I wanted to make, and could now do this. Rather than make the
updates to the existing PHP code, though, I decided to take the opportunity to switch the
interface to one using the Django development platform. This is partly due to a subjective
preference to use Python (on which Django is based) as a general scripting/programming
language rather than keep using PHP, when this database had become the only project on
which I was using PHP. I feared it would become more difficult and inefficient to keep up to
date with developments in PHP, particularly in respect of security. Objectively also, the admin
interface provided as part of the Django platform is a good, reliable and secure fit for
enabling the editing of the site. There were a number of reasons why I did not use Python
and Django in 2015 which no longer applied:

○ Difficulties with low-cost deployment through FastCGI, which was the only route I had

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Glossary/Progressive_Enhancement
https://en.wikipedia.org/wiki/Responsive_web_design
https://en.wikipedia.org/wiki/CSS
https://www.alwaysdata.com/en/
https://www.djangoproject.com/
https://www.python.org/
https://en.wikipedia.org/wiki/FastCGI


available at that time. Deployment through WSGI is now widely available, including
within low-cost hosting services.

○ Python was going through a backwards-incompatible migration from v2 to v3 that
caused complications within the language itself and for platforms like Django built on
it.

○ Because of these issues and others, the long-term future of Django was not
sufficiently clear. It is now more mature as a platform with well-established long-term
support through its community (which has grown significantly since then) and the
foundation set up to support it.

Another reason for originally using PHP was that I believed at the time it would be better for
“succession planning” for someone else to take over the running of the site, as there would
likely be more people with knowledge of PHP. On the other hand, though there would be a
specific requirement for someone who knows Python and Django, that actually makes the
“job description” very clear, and for anyone who meets that spec, the site as it is now set up
would be very straightforward. It is simple in construction and sticks to mainstream
conventions for use of the platform. Code written in PHP without a platform is inevitably
more or less idiosyncratic depending on the original author (as the history of the Beacon
project shows, though the Beacon code is many times more complex due to the much
greater range of functionality).

When originally launching the database site I stressed that, for this project, the maintenance
of the database was the most important issue. Setting up a public and user interface through
a website is not trivial but could always be re-done, and anyone with the knowledge and
skills to take over would likely have their own preference for how to do it. The exercise of
migrating from PHP to Django is itself a demonstration of this.

As well as the ready-made admin interface, Django provides a robust basis for
object-relational mapping so that, rather than starting with the database being manipulated
directly through SQL queries, Python “models” can be used both for originally conceiving the
data structures and also for manipulating and retrieving data used on the site. This is more
efficient than using bespoke PHP code either through further bespoke classes and objects or
through thinly wrapping SQL queries in PHP. The migration did involve an initial challenge
where the database had already been constructed: this involved, as a one-time exercise,
going backwards from the SQL structures to set up the Python models, but this was not
particularly difficult and was in itself a useful learning exercise.

The intention always was that the research database would itself be a “shared learning”
project, listed (recursively?!) as project 410 in the database, one of whose uses should be to
share knowledge about the techniques used in its development.

Please let me know if you have comments or questions.

David Nicholls
23 February 2024

https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://www.fullstackpython.com/object-relational-mappers-orms.html

